The synapsis event in the homologous pairing of DNAs: RecA recognizes and pairs less than one helical repeat of DNA.

نویسندگان

  • P Hsieh
  • C S Camerini-Otero
  • R D Camerini-Otero
چکیده

A key step in homologous recombination is the alignment and pairing of homologous DNAs. The Escherichia coli RecA protein initiates pairing by binding to single-strand DNA, forming a helical nucleoprotein filament. We demonstrate that in the presence of the nonhydrolyzable ATP analogue adenosine 5'-[gamma-thio]triphosphate and ADP, RecA can pair a homologous oligonucleotide 15 bases long with a duplex DNA to yield synaptic complexes consisting of the oligonucleotide and duplex DNA stabilized by RecA. RecA can pair as few as eight bases of homology to form such synaptic complexes. The homologous DNAs remain paired to each other upon removal of RecA provided that the length of shared homology is at least 26 base pairs. Based on our findings and the work of others, we propose that in vitro, one helical turn of a RecA nucleoprotein filament containing approximately six RecA monomers and 15 bases of single-strand DNA is the functional unit sufficient to carry out the homology search.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triple-helical DNA pairing intermediates formed by recA protein.

RecA protein aligns homologous single- and double-stranded DNA molecules in three-stranded joints that can extend over thousands of base pairs. When cross-linked by 4'-amino-4,5',8-trimethyl-psoralen the joint structure observed in nonuniform and divided into multiple substructures each a few hundred base pairs long. Two paired substructures are observed; at least one, and possibly both, are ri...

متن کامل

The role of negative superhelicity and length of homology in the formation of paranemic joints promoted by RecA protein.

Escherichia coli RecA protein pairs homologous DNA molecules to form paranemic joints when there is an absence of a free end in the region of homologous contact. Paranemic joints are a key intermediate in homologous recombination and are important in understanding the mechanism for a search of homology. The efficiency of paranemic joint formation depended on the length of homology and the topol...

متن کامل

Enhanced recA protein binding to Z DNA represents a kinetic perturbation of a general duplex DNA binding pathway.

recA protein binding to duplex DNA is enhanced when a B form DNA substrate is replaced with a left-handed Z form helix. This represents a kinetic rather than an equilibrium effect. Binding to Z DNA is much faster than binding to B DNA. In other respects, binding to the two DNA forms is quite similar. recA protein binds to B or Z DNA with a stoichiometry of 1 monomer/4 base pairs. The final prot...

متن کامل

A sister-strand exchange mechanism for recA-independent deletion of repeated DNA sequences in Escherichia coli.

In the genomes of many organisms, deletions arise between tandemly repeated DNA sequences of lengths ranging from several kilobases to only a few nucleotides. Using a plasmid-based assay for deletion of a 787-bp tandem repeat, we have found that a recA-independent mechanism contributes substantially to the deletion process of even this large region of homology. No Escherichia coli recombination...

متن کامل

RecA protein-facilitated DNA strand breaks. A mechanism for bypassing DNA structural barriers during strand exchange.

RecA protein promotes an unexpectedly efficient DNA strand exchange between circular single-stranded DNA and duplex DNAs containing short (50-400-base pair) heterologous sequences at the 5' (initiating) end. The major mechanism by which this topological barrier is bypassed involves DNA strand breakage. Breakage is both strand and position specific, occurring almost exclusively in the displaced ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 89 14  شماره 

صفحات  -

تاریخ انتشار 1992